Large Enhancement of Critical Current in Superconducting Devices by Gate Voltage

Significant control over the properties of a high-carrier density superconductor via an applied electric field has been considered infeasible due to screening of the field over atomic length scales. Here, Mirko Rocci and coworkers, from NEST Scuola Normale Superiore & Istituto nanoscienze -CNR and MIT, demonstrate non NanoLetteres journal, an enhancement of up to 30% in critical current in a back-gate tunable NbN micro- and nano superconducting bridges. They suggested plausible mechanism of this enhancement in critical current based on surface nucleation and pinning of Abrikosov vortices is consistent with expectations and observations for type-II superconductor films with thicknesses comparable to their coherence length. Furthermore, they demonstrate an applied electric field-dependent infinite electroresistance and hysteretic resistance. Their work presents an electric field driven enhancement in the superconducting property in type-II superconductors which is a crucial step toward the understanding of field-effects on the fundamental properties of a superconductor and its exploitation for logic and memory applications in a superconductor-based low-dissipation digital computing paradigm.
More details HERE