1.3.12 Quantum thermal machines

The interest in study quantum thermal machines has its roots in the need to understand the
relations between thermodynamics and quantum mechanics [1, 2]. The progress in this field has
also important applications in the control of heat transport in nano-devices [3]. The fundamental
limits to the dimensions of a quantum refrigerator have been found in series of recent works [4-
6]. It has been further demonstrated that these machines could still attain Carnot-efficiency [5]
thus launching the call for the implementation of the smallest possible quantum refrigerator.

We theoretically designed an electronic quantum refrigerator based on four
quantum dots arranged in a square configuration, in contact with as many
thermal reservoirs [7]. The system implements the minimal mechanism for
acting as a self-contained quantum refrigerator, by operating without the
requirement of external time-dependent work and demonstrating heat
extraction from the coldest reservoir and the cooling of the nearby quantum-dot.
We also discuss the operational nature of the definition of local temperatures in
systems out of equilibrium and how important is to discuss reference
experimental regimes to define the regime of operation of small quantum
thermal machines.

a) eServer
Ry
TR,

SN an, A
T.z“' U 1 77:-‘ “.TR

TUSCr Yo
R,

H 2

Figure 1: a) The quadridot. Vertical and Horizontal interdot capacitances are considered to be
the highest energy scales among those in the figure. Their values are determined by the
arrangement of the top gates over the QDs, which are not shown. The four quantum dots are
weakly tunnel coupled to the electronic reservoirs H, C, R1, and R2, respectively, which are all
grounded but maintained at equilibrium at a well-defined temperatures. No tunneling is possible
between dot 1 (orange) and dot 2 (blue), and between dot 4 (red) and dot 3 (orange). b)
schematic representation of the heat flux.

Minimal self-contained thermal machines are theoretical systems that perform a
cycle based only on the steady-state heat transfer from thermal reservoirs at
different temperatures, utilizing as few degree of freedom as possible. In our
work we design an implementation of these machines operating by quantum
mechanical tunneling, consisting of four quantum dots in a planar square array
(named a “quadridot”) coupled to independent electron reservoirs as shown in
Fig. 1. The couplings and the electrostatics interactions has been carefully chosen
so that the quadridot could pump energy from the high temperature reservoir H
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and the low temperature reservoir C to the intermediate temperature reservoirs,
thereby acting as a “quantum refrigerator” (Fig 1). To show this effect, we
explicitly solve the open dynamics of the quadridot and study its asymptotic
behavior. In the Born-Markov-Secular limit we write a Lindblad equation for the
reduced density matrix of the quadridot, which describes the effective dissipative
and coherent interaction between the low-energy states of the system obtained
after a Schrieffer-Wolff transformation. Solving numerically the steady state
equation we observe that for each TC < TR, there exists a minimal threshold
value for TH above which the quadridot extracts heat from the cold reservoir C.
This is shown in Fig. 2-a for TR=2 and different values of Ud, the quadridot works
as a refrigerator in the blue region. For given TH > TR, there is a minimal
temperature (whose approximate value is obtained analytically) for the cold
reservoir under which the effect cannot work. Interestingly for large values of
TH/TR this value asymptotically converges toward a finite non-zero temperature
which can be interpreted as the emergent absolute zero of the model. This
refrigeration effect is also accompanied with a cooling of QD2, namely its
effective local temperature T(eff)C decreases as TH increases, for sufficiently
high TH. However, being the quadridot a nanoscale system out-of-equilibrium,
the definition of the local temperature is must be operational. In Fig. 2 we show
an example of operation showing that depending on how the refrigeration effect
is “switched on” we can achieve very different operational regimes. The QD2
might be either colder (in region I) or hotter (in region II) when the device
extract heat from the C reservoir. Conversely, we might achieve a colder QD2 also
when the quadridot pumps heat into the colder bath (III).
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Figure 2: a) Working conditions of the refrigerator. Panels refer to Ud = 1 (left), Ud = 2 (right).
The change of sign in the heat flow occurs at a value of TH indicated by the black line. Above this
line (blue region) the machine works as a proper refrigerator extracting heat from the CH-
reservoirs and pumping it into R. Black dashed line above the grey region indicates TH = TR=2.
Blue/Red background color intensity is proportional to the actual heat pumped to/extracted from
C- reservoir. b) Possible temperature regimes for Ud = 2. In regions I/II the refrigerator is
working (heat is extracted from C) while in regions III/IV the C bath receives heat. In regions I/1I1
we have an effective decrease of single particle occupation number (i.e. nC < n0C).

In Ref. [8] a completely different approach to quantum thermodynamics was
proposed. Specifically in this work, we define thermodynamic configurations and
identify two primitives of discrete quantum processes between configurations
for which heat and work can be defined in a natural way. This allows us to
uncover a general second law for any discrete trajectory that consists of a
sequence of these primitives, linking both equilibrium and non-equilibrium



configurations. Moreover, in the limit of a discrete trajectory that passes through
an infinite number of configurations, i.e. in the reversible limit, we recover the
saturation of the second law. Finally, we show that for a discrete Carnot cycle
operating between four configurations one recovers Carnot's thermal efficiency.
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