
Fig. 4
Spin-summed pair 
distribution function g(r,0) as 
a function of r/l (l is the 0 0  

harmonic oscillator length) 
for a partially spin-polarized 
quantum dot with N=9 
electrons at coupling 
strength l = l /a = 1.89 (a  0 B B

being the effective Bohr 
radius for GaAs). The results 
of the local spin-density 
approximation (LSDA) and of 
the average spin-density 
approximation (ASDA) [12] 
are compared with Diffusion 
Monte Carlo data [11].

Fig. 5
Probability density 2prn(r) (in 

-1units of l ) as a function of 0

r/l  for a quantum dot with 0

N=6 electrons at varying l. 
The profiles shown are for 
the ferromagnetic state 
which is the ground-state of 
the quantum dot for l³6.35. 
The inset shows the height D 
of the minimum (in units of 

-1l ) as a function of l. 0

Fig. 6
Spin-summed pair 
distribution function g(r,0) as 
a function of r/l  for a 0

quantum dot with N=6 
electrons in its ground state 
at various l. The curves for 
l = 1.89 and 3.54 refer to 
the paramagnetic state, 
while those for l = 10 and 
12 refer to the 
ferromagnetic state.
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F i g .  5  F i g .  6  

and the available Diffusion Monte Carlo consisting of one electron at the center of 
data (Fig. 4), thus providing a detailed the trap and a surrounding ring of five 
picture of two-body correlations in a electrons. Fig. 6 shows that, whereas the 
coupling-strength regime preceding the paramagnetic ground state at weak 
formation of Wigner-like electron orde- coupling does not possess radial structure, 
ring. Fig. 5 shows how with increasing the ferromagnetic ground state at l = 10 
coupling strength the system with N=6 and 12 exhibits a main first-neighbor peak 
electrons acquires the (1,5) structure in g(r,0) followed by secondary structures.

ollective modes and ballistic expansion of a Fermi superfluid in the BCS-BEC 
crossover. Current experiments on ultracold atomic Fermi gases are focussed on Csuperfluid states, and Bose-Einstein condensation of dimers has been achieved. A 

key tool for the manipulation of atomic gases is the use of a Feshbach resonance to vary the 
magnitude and sign of the coupling strength. Across the resonance the s-wave scattering 
length goes from large positive to large negative values, thus allowing exploration of the 
crossover from the Bardeen-Cooper-Schrieffer (BCS) state to the Bose-Einstein condensate 
(BEC) of bound-fermion pairs.

The frequencies of the collective modes equation of state and the density profiles of 
are well known in both the BCS and the the gas under axially symmetric confine-
BEC limit. From non-mean-field perturba- ment with the help of a local density 
tive estimates it has been conjectured that approximation, and use them to determine 
the frequency of the transverse breathing the collective mode frequencies and the 
mode in a highly elongated trap should expansion rate by means of a simple 
exhibit a non-trivial dependence on the scaling assumption. 
scattering length [2]. With the aim to 

Our results do not use an interpolation investigate this crucial point, we evaluate 
scheme nor involve adjustable parame-the frequencies of collective modes and 
ters, and show already at mean-field level the anisotropic expansion rate of a 
non-monotonic behaviors across a harmonically trapped Fermi superfluid at 
Feshbach resonance. The theoretical varying coupling strengths across a 
results are compared in Fig. 1 with Feshbach resonance driving a BCS-BEC 
experimental data from two different crossover [3]. We have used a microscopic 
groups [7,8], highlighting the degree of mean-field description of the BCS-BEC 
agreement between theory and experi-crossover [4,5], which at zero temperature 
ments and the need for further experimen-is believed to capture the essential physics 
tal studies.in all regimes [6]. We calculate the 
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Fig. 1
Transverse (top) and axial 
(bottom) breathing modes in 
a trapped Fermi gas. The 
solid circles and empty 
triangles with error bars are 
the experimental results 
given by Kinast et al. [7] and 
by Bartenstein et al. [8]. 
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Condensate localization in quasi-periodic 
structures 

and we have found that the number of 
condensed atoms leaving the lattice under 

Solid-state-like systems such as a conden- the action of a constant force reflects the 
sate or a quantum degenerate Fermi gas interference between the different paths 
moving in a lattice can be realized by [9,10] (see Fig. 2). On the other hand, in 
superposing periodic or quasi-periodic the presence of quasi-periodicity the 
optical potentials to the atomic confine- spectrum becomes fragmented, the simple 
m e n t .  F o r  i n s t a n c e ,  a  q u a s i - picture for Bloch oscillations breaks down 
onedimensional (1D) array of potential and localization effects appear [10,11]. In 
wells is created by the interference of two Fig. 3 we show a schematic drawing of a 
optical laser beams which counterpropa- set-up of optical lasers that would create 
gate. Such an optical lattice provides an an atomic Fibonacci wave guide. Two pairs 
almost ideal periodic potential and has of counterpropagating laser beams create 
allowed the study of Bloch and Josephson- a square optical lattice. The projection of 
like oscillations (see Ref. [1] and references this lattice on a line, at an angle (relative to 
therein). the lattice) whose tangent corresponds to 

We have studied the transport proper- the golden ratio, creates a quasi-periodic 
ties of condensed bosons through 1D sequence of bond lengths, and hence of 
multi-periodic and quasi-periodic arrays. hopping energies, which obey the 
We describe the system by means of a Fibonacci rule [11]. The atoms can be 
Bose-Hubbard Hamiltonian and use a made to travel along the sequence by 
scattering-matrix approach to evaluate the pointing a hollow beam along this 
transmission coefficient of the condensate direction. Only for particular values of the 
wavefunction travelling through the array external force, which could be controlled 
under a constant external drive. When the by varying the orientation of the whole set-
lattice is modified by introducing further up with respect to the vertical axis, the 
periodicities, in momentum space there condensed atoms can be extracted from 
exist several paths for Bloch oscillations the array (see Fig. 2).

Fig. 2
Condensate transmittivity 
from period doubling (top) 
and through a Fibonacci 
chain (bottom), as a function 
of the ratio between the 
Bloch period T  and the B

characteristic time t related 
to tunnel through the gap in 
the double period lattice.
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Fully frustrated cold atoms wave” approximation, in the presence of 
Fully frustrated Josephson Junction arrays both quantum and thermal fluctuations. 
(FF-JJA's) [12,13] exhibit a compound A typical result for a finite lattice with 
phase transition in which an Ising transition N =1296 sites with periodic boundary s

associated with discrete broken translatio- conditions is reported in Fig. 4. In the 
nal symmetry and a Berezinskii-Kosterlitz- broken translation symmetry state n (k) is f

Thouless (BKT) transition associated with non-zero at superlattice reciprocal lattice 
phase coherence occur nearly simultaneo- vectors  G = p(n,m)/d, d being the lattice n,m

usly. constant. The expected BKT peaks at 
In a recent work [14] we have proposed k=G  associated with the gauge U(1) 2n,2m

that ultracold atoms be used to study the symmetry are evident but the discrete Z2 
incompletely understood phase transitions 

Ising-like symmetry induces non-zero 
that occur in FF-JJA's. As a model for 

satellites at k=G , G  and G . These 1,0 0,1 1,1
ultracold atoms hopping in a 2D optical 

are a sharp manifestation of the broken 
lattice we have used the Quantum Phase 

discrete translational symmetry and would 
Model [12] with hopping energy E  and on-J be absent in an unfrustrated system. 
site Hubbard repulsion U. We have So, both U(1) and Z orders can be 2 
calculated the momentum distribution 

studied by momentum-distribution 
function n (k) within a self-consistent “spin-f measurements. 

Fig. 3
Schematic representation of 
a five laser-beam 
configuration to create a 
quasi-one-dimensional 
Fibonacci array for an 
atomic gas. Four beams 
generate a square optical 
lattice and a hollow beam 
confines the gas to a strip 
with slope a relative to an 
axis of the lattice, whose 
tangent corresponds to the 
golden ratio. The angle b 
between the hollow beam 
and the vertical direction 
determines the driving force 
as F=mg cos(b).
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Fig. 4
Properly normalized 
momentum distribution 
function n(k) [14] for FF f

cold bosons in a 2D lattice 
with a modulation 
parameter a=0.5 [15] as a 
function of the continuous  'variable kd  [-2p,2p]´[-
2p,2p]. In this case the 
thermal energy is 
k T=0.242E  and the B J  

Hubbard repulsion is U=0.1 
E . J
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