Correlations in low-dimensional electronic systems

Saeed Abedinpour
Reza Asgari Pablo Capuzzi
Miguel Cardenas Bahman Davoudi Xianlong Gao
Mario Gattobigio Marco Polini Mario P. Tosi
Patrizia Vignolo

Fig.
Magnetic phase diagram of the 2D EG. The groundstate energy of the 2D EG (in Rydbergs, referred to the Madelung energy $m=$ $2.2122 / r_{s}$ and multiplied by $r_{s}^{3 / 2}$) is shown as a function of r_{s} for states of different spin-polarization [1]. The full lines show the theoretical results for the paramagnetic state and the ferromagnetic state, while the dots report Quantum Monte Carlo (QMC) data from Attaccalite et al. [2].

Theory of electron-pair correlations. We have developed very accurate scattering and Fermi-hypernetted-chain methods for the calculation of spin-resolved pair distribution functions in the homogeneous electron gas (EG). These methods provide precise knowledge of the ground-state energy and are thus extremely powerful for a quantitative prediction of the phase diagram and quantum critical points.

We have recently predicted the paramagnetic-to-ferromagnetic (Bloch) quantum phase transition in a two-dimensional (2D) EG to occur at a value of the Wigner-Seitz density parameter $r_{\text {s }}$ of about 25, in close agreement with state-of-the-art Quantum Monte Carlo simulation results (see Fig. 1).

Microscopic many-body calculations of Landau Fermi-liquid parameters
Landau's theory of normal Fermi liquids is a physically appealing method designed to deal with the intermediate density regime of an EG where perturbation theory cannot be applied. The basic idea of Landau's theory is that the low-lying excitations of a system of interacting Fermions with repulsive interactions can be constructed starting from the low-lying states of a noninteracting Fermi gas by adiabatically switching-on the interaction between particles. This procedure allows one to establish a one-to-one correspondence between the eigenstates of the ideal system and the approximate eigenstates of the interacting one. Landau called such single-particle excitations of an interacting

Fermi liquid "quasiparticles" (QP's). One of the implications of Landau's theory is that the QP mass m^{*} is renormalized by electron-electron interactions. In essence, the moving QP tends to drag part of the electronic medium along with it producing an extra current. The QP effective mass is a measurable quantity. The most direct way to determine m^{*} would be a measurement of the low-temperature heat capacity $C_{v}(T)$. It is in fact remarkable that electronelectron interaction effects enter $\mathrm{C}_{\mathrm{v}}(\mathrm{T})$ only through m^{*}. These experiments are challenging and have not yet been realized with high precision. An alternative tool to access experimentally the QP effective mass is to analyze quantum Shubnikov-de Haas oscillations of the magnetoresistance.

Motivated by a large number of recent magnetotransport studies (see Ref. [3] and references therein) we have recently revisited [4] the problem of the microscopic calculation of the many-body effective mass enhancement in a paramagnetic 2D EG.

Our systematic study is based on a generalized "GW" approximation which makes use of the many-body local fields and takes advantage of the results of the most recent Quantum Monte Carlo calculations of the static charge- and spinresponse of the 2D EG. We have reported extensive calculations for the many-body effective mass enhancement $\mathrm{m}^{*} / \mathrm{m}$ over a broad range of electron densities (see Fig. 2).

Fig. 2
In this respect we have critically examined the relative merits of the on-shell approximation (OSA), applicable in weakcoupling situations, versus the actual selfconsistent solution of the Dyson equation. We have proven that there must be a critical value of r_{s} for which the effective mass determined within the OSA diverges. A recent paper by Zhang and Das Sarma [6] infers from this fact a true divergence of the effective mass within the Random Phase Approximation. In our view, however, this must be considered an artifact of the OSA, as discussed in detail in Ref. [4]: thus the problem of the 2D metalinsulator transition has been re-opened. Finally we have also shown that our numerical results for a quasi-2D EG, free of any adjustable fitting parameters, are in good qualitative agreement with the recent measurements by Tan et al. [3] in a GaAs/AlGaAs heterojunction-insulated gate field-effect transistor of exceedingly high quality (see Fig. 3).

Ground-state densities and pair correlation functions in parabolic quantum dots For a number of years there has been a growing interest in studying finite quantum systems under external confinement, such as ultracold atomic or molecular gases inside magnetic or optical traps [7] and electrons in quantum dots [8]. The confinement introduces a new length scale and induces novel physical behaviors relative to the corresponding infinitely extended model system. In particular, in a quantum dot the properties of a homogeneous electron gas are profoundly
modified by the emergence of effects that are commonly associated with electrons in atoms. A well-known example is the presence of a shell structure in the energy to add electrons to a quantum dot [9].

With regard to the spatial structure of the electronic system, the analogue of 2D Wigner crystallization has been shown in a path-integral Monte Carlo study [10] to occur in two distinct stages inside a circularly symmetric parabolic quantum dot. Radial ordering of the electrons into shells occurs first and is followed by orientational ordering through freezing of intershell rotations. Short-range order in the electronic structure at lower coupling strength is described by the pair distribution function $g\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$ giving the spinaveraged probability of finding two electrons at positions \mathbf{r} and \mathbf{r} '. Some properties of this function and of its extension to describe spin-resolved pair correlations have been reported for a circular quantum dot in a Diffusion Monte Carlo study by Pederiva etal. [11].

In Ref. [12] we have reported an extensive study of ground-state densities and pair distribution functions for electrons confined in 2D quantum dots over a broad range of coupling strength and electron number N. We have used spin-densityfunctional theory [13] to determine spin densities that have been compared with Diffusion Monte Carlo data. This accurate knowledge of one-body properties has then been used to construct and test a local approximation for the electron-pair correlations. We have found very satisfactory agreement between this local scheme

Fig. 2
Effective mass enhancement in the 2D EG as a function $\begin{array}{lll}\text { of } r_{s} \text { for } 0 & r_{s} & 10 \text {. The }\end{array}$ inset shows an enlargement of the results for r_{s} 1. The lines show the results from the Dyson scheme, while the symbols (except for the dots) are from the OSA. The QMC data (dots) are from Ref. [5]. The labels "RPA", " G_{+}" and " $G_{+} \& G^{\prime}$ " refer to three possible choices for short-range correlations.

Fig. 3
Effective mass enhancement for a 2D EG confined in a GaAs/AlGaAs triangular quantum well of the type used in Ref. [3]. The experimental results (Tan et al.) are from Ref. [3].

Fig. 4
Spin-summed pair distribution function $\mathrm{g}(\mathrm{r}, 0)$ as a function of $\mathrm{r} / \mathrm{I}_{0}\left(\mathrm{I}_{0}\right.$ is the harmonic oscillator length) for a partially spin-polarized quantum dot with $\mathrm{N}=9$ electrons at coupling strength $=I_{0} / a_{8}=1.89\left(a_{8}\right.$ being the effective Bohr radius for GaAs). The results of the local spin-density approximation (LSDA) and of the average spin-density approximation (ASDA) [12] are compared with Diffusion Monte Carlo data [11].
and the available Diffusion Monte Carlo data (Fig. 4), thus providing a detailed picture of two-body correlations in a coupling-strength regime preceding the formation of Wigner-like electron ordering. Fig. 5 shows how with increasing coupling strength the system with $\mathrm{N}=6$ electrons acquires the $(1,5)$ structure
consisting of one electron at the center of the trap and a surrounding ring of five electrons. Fig. 6 shows that, whereas the paramagnetic ground state at weak coupling does not possess radial structure, the ferromagnetic ground state at $=10$ and 12 exhibits a main first-neighbor peak in $g(r, 0)$ followed by secondary structures.

Fig. 5
Probability density $2 \mathrm{mn}(\mathrm{r})$ (in units of I_{0}^{-1}) as a function of $\mathrm{r} / \mathrm{l}_{0}$ for a quantum dot with $N=6$ electrons at varying The profiles shown are for the ferromagnetic state which is the ground-state of the quantum dot for 6.35 . The inset shows the height of the minimum (in units of I_{0}^{-1}) as a function of

Fig. 6
Spin-summed pair
distribution function $g(r, 0)$ as a function of $\mathrm{r} / \mathrm{l}_{0}$ for a quantum dot with $\mathrm{N}=6$ electrons in its ground state at various. The curves for $=1.89$ and 3.54 refer to the paramagnetic state, while those for $=10$ and 12 refer to the ferromagnetic state.

Fig. 5

Fig. 6

References

[1] R. Asgari, B. Davoudi, and M.P. Tosi, Solid State Commun. 131, 301 (2004).
[2] C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. Bachelet, Phys. Rev. Lett. 88, 256601 (2002).
[3] Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West, Phys. Rev. Lett. 94, 016405 (2005).
[4] R. Asgari, B. Davoudi, M. Polini, G. F. Giuliani, M. P. Tosi, and G. Vignale, Phys. Rev. B 71, 045323
(2005).
[5] Y. Kwon, D. M. Ceperley, and R. M. Martin, Phys. Rev. B 50, 1684 (1994).
[6] Y. Zhang and S. Das Sarma, Phys. Rev. B 71, 045322 (2005).
[7] See for instance C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge
University Press, Cambridge, England, 2002); A. Minguzzi, S. Succi, F. Toschi, M. P. Tosi, and P. Vignolo, Phys. Rep. 395, 223 (2004).
[8] L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots (Springer, Berlin, 1998); T. Chakraborty, Quantum Dots: A Survey of the Properties of Artificial Atoms (North Holland, Amsterdam, 1999); L. P. Kouwenhoven, D. G.
Austing, and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).
[9] S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
[10] A. V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev. Lett. 86, 3851 (2001).
[11] F. Pederiva, C. J. Umrigar, and E. Lipparini, Phys. Rev. B 62, 8120 (2000); ibid. 68, 089901 (2003).
[12] M. Gattobigio, P. Capuzzi, M. Polini, R. Asgari, and M. P. Tosi, cond-mat/0501375.
[13] See for instance R. M. Dreizler and E. K. U. Gross, Density Functional Theory, An Approach to the Quantum Many-Body Problem (Springer, Berlin, 1990).

