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Quantum transport in mesoscopic systems

n the last year we have developed analytic and numerical methods to improve the codes
which had been recently elaborated in our group for the study of electronic transport in
nanodevices. The method we use is based on the non-equilibrium Keldysh Green's
function formalism implemented with the real space recursive technique in the tight-binding
framework. Our numerical codes are now able to simulate realistic quantum wire devices of
width of the order of few microns also in the presence of magnetic fields of arbitrary strength

and different kinds of disorder.

The formalism we have settled, allows
to gain a very detailed description of the
microscopic currents in the device,
discerning between equilibrium and non-
equilibrium components of conductances
and of total currents, and corresponding
population analysis [1-3]. We have
addressed the subtle problem of interplay
between conductance quantization and
chirality of currents in Hall-bar devices [4]
considering effects of disorder and the
presence of quantum point contfacts
[5].We have considered a lead-device-
lead impurity free system case in the form
of a Hall bar composed by N, chains
infinitely extended along the x-direction,
threaded by a z-directed magnetic field
with vector potential A= (-By,0,0). landau
levels and edge states produced by
confinement are reported in Figure 1.

The conductance for the perfect wire in
the presence of a magnetic field shows the
typical quantization steps in multiples of
2¢’/h. To analyze the effect of disorder on

Fig. 1

Dispersion curve of an ideal
wire with site energies
E,=4|t|, m*=0.067 m,
T=-0.125 eV and B=5T
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currents and conductance quantization,
we have then introduced a 100 sites wide
region of Anderson disorder with strength
[t|/3, where t is the nearest neighbor
interaction in the system Hamiltonian. The
total conductance is reported in Figure
2(a). In figure 2(b) a map of the total
persistent currents when E.=17 meV
(plateau region) is reported.

It is evident that these currents spread
all over the device and not only at the
edges. The corruption of the sharp steps of
the conductance due to disorder is evident
even if the central part of the lower
plateaus is preserved flat. This suggests
that in the plateau regions chirality of
currents holds as shown by the spatial
distribution of persistent and transport
currents reported in figures 2(c) and 2(d).
When chirality of charge flow is not present
(as in Figures 2(e) and 2(f) for E.=21 meV)
currents invade all the device and quanti-
zation is absent.
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Fig. 2
160 (a)Total conductance versus
- Fermi energy in the presence
— of disorder.

(b)Persistent current
distribution up to E,.=17
meV, the unit on the color
scale is nA. The arrows are a
guide to the eye and
indicate schematically the
local direction of the
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currents.

(c)Transport differential
conductance distributions at
E;=17meV

We have studied conductive channels
and currents distribution through a narrow
quantum point contact in a 2DEG in
magnetic field (Fig. 3). We have shown
that when the conditions of chiral transport
regime are met in the two regions separa-
ted by the QPC, exact quantization in
infeger multiples of 2e’/h is maintained
both for the conductance of the incident

(d)Persistent differential
conductance distributions at
E.=17meV;

(e)Transport conductance
distributions at E.=21 meV.
(F)Persistent conductance
distributions at E;=21 meV.
For conductances, the unit
on the color scale is 2¢’/h

current and the backscattered plus
transmitted currents.

For this system we have also evaluated
the non-equilibrium electron distribution
function at different positions inside the bar
when a finite chemical potential difference
is applied to the electrodes (see Fig. 4 and
Fig. 5)

Fig. 3

Differential conductance
profile for transport current
for a two-dimensional bar
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of width 200 nm (and
infinite length) with a narrow
constriction of width 8 nm
and a central opening of 20
nm. The Fermi energy is
E=9.5 meV (we take
m<E<m so that the electron
beam is injected from the
right lead in the lower edge
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of the device). The unit on
the color scale is 2¢’/h. The
unit of length is nm.
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Fig. 4

Density-of-states D
(states/eV), density-of-
occupied-states 1 (states/eV)
and non-equilibrium
distribution f at various
sections of the device
(indicated in the inset) at the
energy E=9.5 meV. (q)
section at x=350 nm in the
injecting region; (b) section
at x=222 nm slightly at the
right of the quantum point
contact zone; (c) section at
x=201 nm slightly at the left
of the quantum point
contact; (d) section at x=50
nm in the collector region.

Fig. 5

(A) Density-of-states D far
from the constriction
(states/eV); (b) density-of-
occupied-states 1 in the
collector region (states/eV);
(c) density-of-occupied-
states r in the injection
region (states/eV)
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